Strategies for hp-adaptive refinement

نویسنده

  • William F. Mitchell
چکیده

In the hp-adaptive version of the finite element method for solving partial differential equations, the grid is adaptively refined in both h, the size of the elements, and p, the degree of the piecewise polynomial approximation over the element. The selection of which elements to refine is determined by a local a posteriori error indicator, and is well established. But the determination of whether the element should be refined by h or p is still open. In this paper, we describe several strategies that have been proposed for making this determination. A numerical example to illustrate the effectiveness of these strategies will be presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations

The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a particularly efficient method for solving partial differential equations because it can achieve a convergence rate that is exponential in the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the polynomial degree, p. Like adaptive refinement for the h versi...

متن کامل

A A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations

Technology The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a particularly efficient method for solving PDEs because it can achieve an exponential convergence rate in the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the polynomial degree, p. Like adaptive refinement for the h version of the finite eleme...

متن کامل

Performance of hp-Adaptive Strategies for 3D Elliptic Problems

The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a particularly efficient method for solving partial differential equations (PDEs) because it can achieve an exponential convergence rate in the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the polynomial degree, p. Like adaptive refinement for the h versi...

متن کامل

Efficiency-based hp-refinement for finite element methods

Two efficiency-based grid refinement strategies are investigated for adaptive finite element solution of partial differential equations. In each refinement step, the elements are ordered in terms of decreasing local error, and the optimal fraction of elements to be refined is determined based on efficiency measures that take both error reduction and work into account. The goal is to reach a pre...

متن کامل

Adjoint-based h-p Adaptive Discontinuous Galerkin Methods for the Compressible Euler Equations

In this paper, we investigate and present an adaptive Discontinuous Galerkin algorithm driven by an adjoint-based error estimation technique for the inviscid compressible Euler equations. This approach requires the numerical approximations for the flow (i.e. primal) problem and the adjoint (i.e. dual) problem which corresponds to a particular simulation objective output of interest. The converg...

متن کامل

Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations

In this paper, we investigate and present an adaptive Discontinuous Galerkin algorithm driven by an adjoint-based error estimation technique for the inviscid compressible Euler equations. This approach requires the numerical approximations for the flow (i.e. primal) problem and the adjoint (i.e. dual) problem which corresponds to a particular simulation objective output of interest. The converg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008